Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real-valued Evolutionary Multi-modal Multi-objective Optimization by Hill-Valley Clustering (2010.14998v1)

Published 28 Oct 2020 in cs.NE and math.OC

Abstract: In model-based evolutionary algorithms (EAs), the underlying search distribution is adapted to the problem at hand, for example based on dependencies between decision variables. Hill-valley clustering is an adaptive niching method in which a set of solutions is clustered such that each cluster corresponds to a single mode in the fitness landscape. This can be used to adapt the search distribution of an EA to the number of modes, exploring each mode separately. Especially in a black-box setting, where the number of modes is a priori unknown, an adaptive approach is essential for good performance. In this work, we introduce multi-objective hill-valley clustering and combine it with MAMaLGaM, a multi-objective EA, into the multi-objective hill-valley EA (MO-HillVallEA). We empirically show that MO-HillVallEA outperforms MAMaLGaM and other well-known multi-objective optimization algorithms on a set of benchmark functions. Furthermore, and perhaps most important, we show that MO-HillVallEA is capable of obtaining and maintaining multiple approximation sets simultaneously over time.

Citations (12)

Summary

We haven't generated a summary for this paper yet.