Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large Scale Many-Objective Optimization Driven by Distributional Adversarial Networks (2003.07013v1)

Published 16 Mar 2020 in cs.NE

Abstract: Estimation of distribution algorithms (EDA) as one of the EAs is a stochastic optimization problem which establishes a probability model to describe the distribution of solutions and randomly samples the probability model to create offspring and optimize model and population. Reference Vector Guided Evolutionary (RVEA) based on the EDA framework, having a better performance to solve MaOPs. Besides, using the generative adversarial networks to generate offspring solutions is also a state-of-art thought in EAs instead of crossover and mutation. In this paper, we will propose a novel algorithm based on RVEA[1] framework and using Distributional Adversarial Networks (DAN) [2]to generate new offspring. DAN uses a new distributional framework for adversarial training of neural networks and operates on genuine samples rather than a single point because the framework also leads to more stable training and extraordinarily better mode coverage compared to single-point-sample methods. Thereby, DAN can quickly generate offspring with high convergence regarding the same distribution of data. In addition, we also use Large-Scale Multi-Objective Optimization Based on A Competitive Swarm Optimizer (LMOCSO)[3] to adopts a new two-stage strategy to update the position in order to significantly increase the search efficiency to find optimal solutions in huge decision space. The propose new algorithm will be tested on 9 benchmark problems in Large scale multi-objective problems (LSMOP). To measure the performance, we will compare our proposal algorithm with some state-of-art EAs e.g., RM-MEDA[4], MO-CMA[10] and NSGA-II.

Citations (10)

Summary

We haven't generated a summary for this paper yet.