Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 97 tok/s
GPT OSS 120B 455 tok/s Pro
Kimi K2 194 tok/s Pro
2000 character limit reached

DisenE: Disentangling Knowledge Graph Embeddings (2010.14730v2)

Published 28 Oct 2020 in cs.CL and cs.AI

Abstract: Knowledge graph embedding (KGE), aiming to embed entities and relations into low-dimensional vectors, has attracted wide attention recently. However, the existing research is mainly based on the black-box neural models, which makes it difficult to interpret the learned representation. In this paper, we introduce DisenE, an end-to-end framework to learn disentangled knowledge graph embeddings. Specially, we introduce an attention-based mechanism that enables the model to explicitly focus on relevant components of entity embeddings according to a given relation. Furthermore, we introduce two novel regularizers to encourage each component of the entity representation to independently reflect an isolated semantic aspect. Experimental results demonstrate that our proposed DisenE investigates a perspective to address the interpretability of KGE and is proved to be an effective way to improve the performance of link prediction tasks.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.