Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Align-Refine: Non-Autoregressive Speech Recognition via Iterative Realignment (2010.14233v1)

Published 24 Oct 2020 in eess.AS, cs.CL, cs.LG, and cs.SD

Abstract: Non-autoregressive models greatly improve decoding speed over typical sequence-to-sequence models, but suffer from degraded performance. Infilling and iterative refinement models make up some of this gap by editing the outputs of a non-autoregressive model, but are constrained in the edits that they can make. We propose iterative realignment, where refinements occur over latent alignments rather than output sequence space. We demonstrate this in speech recognition with Align-Refine, an end-to-end Transformer-based model which refines connectionist temporal classification (CTC) alignments to allow length-changing insertions and deletions. Align-Refine outperforms Imputer and Mask-CTC, matching an autoregressive baseline on WSJ at 1/14th the real-time factor and attaining a LibriSpeech test-other WER of 9.0% without an LM. Our model is strong even in one iteration with a shallower decoder.

Citations (50)

Summary

We haven't generated a summary for this paper yet.