Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deliberation of Streaming RNN-Transducer by Non-autoregressive Decoding (2112.11442v1)

Published 1 Dec 2021 in cs.CL, cs.LG, and eess.AS

Abstract: We propose to deliberate the hypothesis alignment of a streaming RNN-T model with the previously proposed Align-Refine non-autoregressive decoding method and its improved versions. The method performs a few refinement steps, where each step shares a transformer decoder that attends to both text features (extracted from alignments) and audio features, and outputs complete updated alignments. The transformer decoder is trained with the CTC loss which facilitates parallel greedy decoding, and performs full-context attention to capture label dependencies. We improve Align-Refine by introducing cascaded encoder that captures more audio context before refinement, and alignment augmentation which enforces learning label dependency. We show that, conditioned on hypothesis alignments of a streaming RNN-T model, our method obtains significantly more accurate recognition results than the first-pass RNN-T, with only small amount of model parameters.

Citations (19)

Summary

We haven't generated a summary for this paper yet.