Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 200 tok/s Pro
2000 character limit reached

Data-driven distributed control: Virtual reference feedback tuning in dynamic networks (2010.14177v1)

Published 27 Oct 2020 in eess.SY and cs.SY

Abstract: In this paper, the problem of synthesizing a distributed controller from data is considered, with the objective to optimize a model-reference control criterion. We establish an explicit ideal distributed controller that solves the model-reference control problem for a structured reference model. On the basis of input-output data collected from the interconnected system, a virtual experiment setup is constructed which leads to a network identification problem. We formulate a prediction-error identification criterion that has the same global optimum as the model-reference criterion, when the controller class contains the ideal distributed controller. The developed distributed controller synthesis method is illustrated on an academic example network of nine subsystems and the influence of the controller interconnection structure on the achieved closed-loop performance is analyzed.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.