Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FedE: Embedding Knowledge Graphs in Federated Setting (2010.12882v1)

Published 24 Oct 2020 in cs.CL

Abstract: Knowledge graphs (KGs) consisting of triples are always incomplete, so it's important to do Knowledge Graph Completion (KGC) by predicting missing triples. Multi-Source KG is a common situation in real KG applications which can be viewed as a set of related individual KGs where different KGs contains relations of different aspects of entities. It's intuitive that, for each individual KG, its completion could be greatly contributed by the triples defined and labeled in other ones. However, because of the data privacy and sensitivity, a set of relevant knowledge graphs cannot complement each other's KGC by just collecting data from different knowledge graphs together. Therefore, in this paper, we introduce federated setting to keep their privacy without triple transferring between KGs and apply it in embedding knowledge graph, a typical method which have proven effective for KGC in the past decade. We propose a Federated Knowledge Graph Embedding framework FedE, focusing on learning knowledge graph embeddings by aggregating locally-computed updates. Finally, we conduct extensive experiments on datasets derived from KGE benchmark datasets and results show the effectiveness of our proposed FedE.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Mingyang Chen (45 papers)
  2. Wen Zhang (170 papers)
  3. Zonggang Yuan (8 papers)
  4. Yantao Jia (14 papers)
  5. Huajun Chen (198 papers)
Citations (68)

Summary

We haven't generated a summary for this paper yet.