Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning for Radio-based Human Sensing: Recent Advances and Future Directions (2010.12717v2)

Published 23 Oct 2020 in eess.SP and cs.LG

Abstract: While decade-long research has clearly demonstrated the vast potential of radio frequency (RF) for many human sensing tasks, scaling this technology to large scenarios remained problematic with conventional approaches. Recently, researchers have successfully applied deep learning to take radio-based sensing to a new level. Many different types of deep learning models have been proposed to achieve high sensing accuracy over a large population and activity set, as well as in unseen environments. Deep learning has also enabled detection of novel human sensing phenomena that were previously not possible. In this survey, we provide a comprehensive review and taxonomy of recent research efforts on deep learning based RF sensing. We also identify and compare several publicly released labeled RF sensing datasets that can facilitate such deep learning research. Finally, we summarize the lessons learned and discuss the current limitations and future directions of deep learning based RF sensing.

Citations (61)

Summary

We haven't generated a summary for this paper yet.