Novel Hybrid-Learning Algorithms for Improved Millimeter-Wave Imaging Systems (2306.15341v1)
Abstract: Increasing attention is being paid to millimeter-wave (mmWave), 30 GHz to 300 GHz, and terahertz (THz), 300 GHz to 10 THz, sensing applications including security sensing, industrial packaging, medical imaging, and non-destructive testing. Traditional methods for perception and imaging are challenged by novel data-driven algorithms that offer improved resolution, localization, and detection rates. Over the past decade, deep learning technology has garnered substantial popularity, particularly in perception and computer vision applications. Whereas conventional signal processing techniques are more easily generalized to various applications, hybrid approaches where signal processing and learning-based algorithms are interleaved pose a promising compromise between performance and generalizability. Furthermore, such hybrid algorithms improve model training by leveraging the known characteristics of radio frequency (RF) waveforms, thus yielding more efficiently trained deep learning algorithms and offering higher performance than conventional methods. This dissertation introduces novel hybrid-learning algorithms for improved mmWave imaging systems applicable to a host of problems in perception and sensing. Various problem spaces are explored, including static and dynamic gesture classification; precise hand localization for human computer interaction; high-resolution near-field mmWave imaging using forward synthetic aperture radar (SAR); SAR under irregular scanning geometries; mmWave image super-resolution using deep neural network (DNN) and Vision Transformer (ViT) architectures; and data-level multiband radar fusion using a novel hybrid-learning architecture. Furthermore, we introduce several novel approaches for deep learning model training and dataset synthesis.
- Y. Sang, L. Shi, and Y. Liu, “Micro hand gesture recognition system using ultrasonic active sensing,” IEEE Access, vol. 6, pp. 49 339–49 347, Sep. 2018.
- Y. Kim and B. Toomajian, “Hand gesture recognition using micro-Doppler signatures with convolutional neural network,” IEEE Access, vol. 4, pp. 7125–7130, Oct. 2016.
- S. Maragliulo, P. F. A. Lopes, L. B. Osório, A. T. De Almeida, and M. Tavakoli, “Foot gesture recognition through dual channel wearable EMG system,” IEEE Sensors J., vol. 19, no. 22, pp. 10 187–10 197, Nov. 2019.
- Y. Kim and B. Toomajian, “Application of Doppler radar for the recognition of hand gestures using optimized deep convolutional neural networks,” in Proc. 11th Eur. Conf. Antennas Propag. (EuCAP), Paris, France, Mar. 2017, pp. 1258–1260.
- J. Park and S. H. Cho, “IR-UWB radar sensor for human gesture recognition by using machine learning,” in Proc. IEEE HPCC/SmartCity/DSS, Sydney, NSW, Australia, Dec. 2016, pp. 1246–1249.
- S. Y. Kim, H. G. Han, J. W. Kim, S. Lee, and T. W. Kim, “A hand gesture recognition sensor using reflected impulses,” IEEE Sensors J., vol. 17, no. 10, pp. 2975–2976, Mar. 2017.
- J. W. Smith, S. Thiagarajan, R. Willis, Y. Makris, and M. Torlak, “Improved static hand gesture classification on deep convolutional neural networks using novel sterile training technique,” IEEE Access, vol. 9, pp. 10 893–10 902, Jan. 2021.
- D. M. Sheen, T. E. Hall, D. L. McMakin, A. M. Jones, and J. R. Tedeschi, “Three-dimensional radar imaging techniques and systems for near-field applications,” in Proc. SPIE, vol. 9829, Baltimore, MD, USA, May 2016, p. 98290V.
- M. E. Yanik and M. Torlak, “Near-field 2-D SAR imaging by millimeter-wave radar for concealed item detection,” in Proc. IEEE Radio Wirel. Symp. (RWS), Orlando, FL, USA, Jan. 2019, pp. 1–4.
- X. Zhuge and A. Yarovoy, “Automatic target recognition in ultra-wideband 3-D images for concealed weapon detection,” in Proc. 9th Eur. Conf. Synth. Aperture Radar (EUSAR), Nuremberg, Germany, Apr. 2012, pp. 186–188.
- L. Carrer and A. G. Yarovoy, “Concealed weapon detection using UWB 3-D radar imaging and automatic target recognition,” in Proc. 8th Eur. Conf. Antennas Propag. (EuCAP), The Hague, Netherlands, Apr. 2014, pp. 2786–2790.
- L. Chao, M. N. Afsar, and K. A. Korolev, “Millimeter wave dielectric spectroscopy and breast cancer imaging,” in Proc. 7th Eur. Microw. Integr. Circuits Conf. (EuMIC), Amsterdam, Netherlands, Oct. 2012, pp. 572–575.
- Y. Gao and R. Zoughi, “Millimeter wave reflectometry and imaging for noninvasive diagnosis of skin burn injuries,” IEEE Trans. Instrum. Meas., vol. 66, no. 1, pp. 77–84, Nov. 2016.
- S. Di Meo, G. Matrone, M. Pasian, M. Bozzi, L. Perregrini, G. Magenes, A. Mazzanti, F. Svelto, P. Summers, G. Renne et al., “High-resolution mm-wave imaging techniques and systems for breast cancer detection,” in Proc. IEEE/MTT-S Int. Microw. Workshop Ser. Adv. Mater. Process. RF THz Appl. (IMWS-AMP), Pavia, Italy, Sep. 2017, pp. 1–3.
- A. Mirbeik-Sabzevari, S. Li, E. Garay, H.-T. Nguyen, H. Wang, and N. Tavassolian, “Synthetic ultra-high-resolution millimeter-wave imaging for skin cancer detection,” IEEE Trans. Biomed. Eng., vol. 66, no. 1, pp. 61–71, Oct. 2018.
- A. Mirbeik-Sabzevari, N. Tavassoian, and R. Ashinoff, “Ultra-high-resolution millimeter-wave imaging: A new promising skin cancer imaging modality,” in Proc. IEEE Biomed. Circuits Syst. Conf. (BioCAS), Cleveland, OH, USA, Oct. 2018, pp. 1–4.
- A. Fedeli, C. Estatico, M. Pastorino, and A. Randazzo, “Microwave detection of brain injuries by means of a hybrid imaging method,” IEEE Open J. Antennas Propag., vol. 1, pp. 513–523, Sep. 2020.
- B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep residual networks for single image super-resolution,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017, pp. 136–144.
- X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in Proc. 14th Int. Conf. Artif. Intell. Stat. (ISTATS), Fort Lauderdale, FL, USA, Apr. 2011, pp. 315–323.
- T. Björklund, A. Fiandrotti, M. Annarumma, G. Francini, and E. Magli, “Automatic license plate recognition with convolutional neural networks trained on synthetic data,” in Proc. 19th Int. Workshop Multimed. Signal Process. (MMSP), Dec. 2017, pp. 1–6.
- X. Wu, L. Liang, Y. Shi, and S. Fomel, “FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation,” Geophysics, vol. 84, no. 3, pp. IM35–IM45, Apr. 2019.
- D. M. Sheen, D. L. McMakin, T. E. Hall, and R. H. Severtsen, “Real-time wideband cylindrical holographic surveillance system,” Jan. 1999, US Patent 5,859,609.
- D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory Techn., vol. 49, no. 9, pp. 1581–1592, Sep. 2001.
- D. Sheen, D. McMakin, and T. Hall, “Near-field three-dimensional radar imaging techniques and applications,” Appl. Opt., vol. 49, no. 19, pp. E83–E93, Jun. 2010.
- D. M. Sheen, A. M. Jones, and T. E. Hall, “Simulation of active cylindrical and planar millimeter-wave imaging systems,” in Proc. SPIE, vol. 10634, Orlando, FL, USA, May 2018, p. 1063408.
- V. Winkler, “Range doppler detection for automotive FMCW radars,” in Proc. 4th Eur. Radar Conf. (EuRAD), Munich, Germany, Oct. 2007, pp. 166–169.
- J. Kim, J. Chun, and S. Song, “Joint range and angle estimation for fmcw mimo radar and its application,” arXiv preprint arXiv:1811.06715, Nov. 2018.
- A. B. Baral and M. Torlak, “Joint doppler frequency and direction of arrival estimation for TDM MIMO automotive radars,” IEEE J. Sel. Top. Signal Process., vol. 15, no. 4, pp. 980–995, Apr. 2021.
- M. Soumekh, “Wide-bandwidth continuous-wave monostatic/bistatic synthetic aperture radar imaging,” in Proc. IEEE Int. Conf. Image Process. (ICIP), Chicago, IL, USA, Oct. 1998, pp. 361–365.
- J. M. Lopez-Sanchez and J. Fortuny-Guasch, “3-D radar imaging using range migration techniques,” IEEE Trans. Antennas Propag., vol. 48, no. 5, pp. 728–737, May 2000.
- J. Lin and C. Huang, “3D hand posture tracking with depth gradient estimation on a RGB-D camera,” in Proc. IEEE Int. Symp. Consum. Electron. (ISCE), Hsinchu, Taiwan, Jun. 2013, pp. 109–110.
- Y. Son and O. Choi, “Image-based hand pose classification using faster R-CNN,” in Proc. 17th Int. Conf. Control Autom. Syst. (ICCAS), Jeju, Korea, Oct. 2017, pp. 1569–1573.
- G. Álvarez Narciandi, J. Laviada, and F. Las-Heras, “Towards turning smartphones into mmWave scanners,” IEEE Access, vol. 9, pp. 45 147–45 154, Mar. 2021.
- M. Garcia-Fernandez, Y. Alvarez-Lopez, and F. L. Heras, “3D-SAR processing of UAV-mounted GPR measurements: Dealing with non-uniform sampling,” in Proc. 14th Eur. Conf. Antennas Propag. (EuCAP), Copenhagen, Denmark, Aug. 2020, pp. 1–5.
- T. Kan, G. Xin, L. Xiaowei, and L. Zhongshan, “Implementation of real-time automotive SAR imaging,” in Proc. IEEE 11th Sens. Array Multichannel Signal Process. Workshop (SAM), Hangzhou, China, Jun. 2020, pp. 1–4.
- S. Paul, F. Schwartau, M. Krueckemeier, R. Caspary, C. Monka-Ewe, J. Schoebel, and W. Kowalsky, “A systematic comparison of near-field beamforming and Fourier-based backward-wave holographic imaging,” IEEE Open J. Antennas Propag., vol. 2, pp. 921–931, Aug. 2021.
- M. A. Maisto, R. Pierri, and R. Solimene, “Sensor arrangement in monostatic subsurface radar imaging,” IEEE Open J. Antennas Propag., vol. 2, pp. 3–13, Nov. 2020.
- M. E. Yanik, D. Wang, and M. Torlak, “Development and demonstration of MIMO-SAR mmWave imaging testbeds,” IEEE Access, vol. 8, pp. 126 019–126 038, Jul. 2020.
- N. Mohammadian, O. Furxhi, R. Short, and R. Driggers, “SAR millimeter wave imaging systems,” in Proc. SPIE, vol. 10994, Baltimore, MD, USA, May 2019, p. 109940A.
- X. Zhuge and A. G. Yarovoy, “A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 1, pp. 509–518, Jul. 2010.
- B. Wu, G. Álvarez Narciandi, and J. Laviada, “Multilayered circular dielectric structure SAR imaging using time-reversal compressed sensing algorithms based on nonuniform measurement,” IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 9, pp. 1491–1495, Jul. 2020.
- J. Gao, B. Deng, Y. Qin, H. Wang, and X. Li, “Efficient terahertz wide-angle NUFFT-based inverse synthetic aperture imaging considering spherical wavefront,” Sensors, vol. 16, no. 12, p. 2120, Dec. 2016.
- S. Demirci, H. Cetinkaya, M. Tekbas, E. Yigit, C. Ozdemir, and A. Vertiy, “Back-projection algorithm for ISAR imaging of near-field concealed objects,” in Proc. 30th URSI Gen. Assem. Sci. Symp. (URSI GASS), Istanbul, Turkey, Aug. 2011, pp. 1–4.
- G. Jia and W. Chang, “Modified back projection reconstruction for circular FMCW SAR,” in Proc. Inter. Radar Conf., Lille, France, Oct. 2014, pp. 1–5.
- J. W. Smith, M. E. Yanik, and M. Torlak, “Near-field MIMO-ISAR millimeter-wave imaging,” in Proc. IEEE Radar Conf. (RadarConf), Florance, Italy, Sep. 2020, pp. 1–6.
- J. Fortuny-Guasch and J. M. Lopez-Sanchez, “Extension of the 3-D range migration algorithm to cylindrical and spherical scanning geometries,” IEEE Trans. Antennas Propag., vol. 49, no. 10, pp. 1434–1444, Oct. 2001.
- J. Detlefsen, A. Dallinger, S. Huber, S. Schelkshorn, and F. H. F. und Schaltungen, “Effective reconstruction approaches to millimeter-wave imaging of humans,” in Proc. XXVIIIth URSI Gen. Assem. Sci. Symp. (URSI GASS), New Delhi, India, Oct. 2005, pp. 23–29.
- J. Laviada, A. Arboleya-Arboleya, Y. Álvarez, B. González-Valdés, and F. Las-Heras, “Multiview three-dimensional reconstruction by millimetre-wave portable camera,” Sci. Rep., vol. 7, no. 1, pp. 6479–6479, Jul. 2017.
- M. E. Yanik and M. Torlak, “Near-field MIMO-SAR millimeter-wave imaging with sparsely sampled aperture data,” IEEE Access, vol. 7, pp. 31 801–31 819, Mar. 2019.
- J. Gao, Y. Qin, B. Deng, H. Wang, and X. Li, “Novel efficient 3D short-range imaging algorithms for a scanning 1D-MIMO array,” IEEE Trans. Image Process., vol. 27, no. 7, pp. 3631–3643, Apr. 2018.
- J. Gao, B. Deng, Y. Qin, H. Wang, and X. Li, “An efficient algorithm for MIMO cylindrical millimeter-wave holographic 3-D imaging,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 11, pp. 5065–5074, Aug. 2018.
- J. Gao, B. Deng, Y. Qin, H. Wang, and X. Li, “Enhanced radar imaging using a complex-valued convolutional neural network,” IEEE Geosci. Remote Sens. Lett., vol. 16, no. 1, pp. 35–39, Sep. 2018.
- M. Wang, S. Wei, J. Liang, Z. Zhou, Q. Qu, J. Shi, and X. Zhang, “TPSSI-Net: Fast and enhanced two-path iterative network for 3D SAR sparse imaging,” IEEE Trans. Image Process., vol. 30, pp. 7317–7332, Aug. 2021.
- J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte, “SwinIR: Image restoration using swin transformer,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshop (ICCVW), Montreal, Canada, Oct. 2021, pp. 1833–1844.
- X. X. Zhu, S. Montazeri, M. Ali, Y. Hua, Y. Wang, L. Mou, Y. Shi, F. Xu, and R. Bamler, “Deep learning meets SAR: Concepts, models, pitfalls, and perspectives,” IEEE Trans. Geosci. Remote Sens., vol. 9, no. 4, pp. 143–172, Feb. 2021.
- Y. Wei, Y. Li, Z. Ding, Y. Wang, T. Zeng, and T. Long, “SAR parametric super-resolution image reconstruction methods based on ADMM and deep neural network,” IEEE Trans. Geosci. Remote Sens., pp. 1–16, Jan. 2021.
- M. B. Alver, A. Saleem, and M. Çetin, “A novel plug-and-play SAR reconstruction framework using deep priors,” in Proc. IEEE Radar Conf. (RadarConf), Boston, MA, USA, Apr. 2019, pp. 1–6.
- C. Hu, L. Wang, Z. Li, and D. Zhu, “Inverse synthetic aperture radar imaging using a fully convolutional neural network,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 7, pp. 1203–1207, Oct. 2020.
- Z. Liu, N. Wu, and X. Liao, “SAR image restoration from spectrum aliasing by deep learning,” IEEE Access, vol. 8, pp. 40 367–40 377, Feb. 2020.
- C. Wu, Z. Zhang, L. Chen, and W. Yu, “Super-resolution for MIMO array SAR 3-D imaging based on compressive sensing and deep neural network,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 13, pp. 3109–3124, Jun. 2020.
- Z. Zhang, H. Wang, F. Xu, and Y.-Q. Jin, “Complex-valued convolutional neural network and its application in polarimetric SAR image classification,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 12, pp. 7177–7188, Sep. 2017.
- M. Wang, S. Wei, J. Liang, X. Zeng, C. Wang, J. Shi, and X. Zhang, “RMIST-Net: Joint range migration and sparse reconstruction network for 3-D mmW imaging,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–17, Apr. 2021.
- Y. Dai, T. Jin, H. Li, Y. Song, and J. Hu, “Imaging enhancement via CNN in MIMO virtual array-based radar,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 9, pp. 7449–7458, Nov. 2021.
- H. Jing, S. Li, K. Miao, S. Wang, X. Cui, G. Zhao, and H. Sun, “Enhanced millimeter-wave 3-D imaging via complex-valued fully convolutional neural network,” Electronics, vol. 11, no. 1, p. 147, 2022.
- S. Z. Gurbuz, A. C. Gurbuz, E. A. Malaia, D. J. Griffin, C. S. Crawford, M. M. Rahman, E. Kurtoglu, R. Aksu, T. Macks, and R. Mdrafi, “American sign language recognition using RF sensing,” IEEE Sensors J., vol. 21, no. 3, pp. 3763–3775, Sep. 2020.
- S. Zhang, G. Li, M. Ritchie, F. Fioranelli, and H. Griffiths, “Dynamic hand gesture classification based on radar micro-Doppler signatures,” in Proc. CIE Int. Conf. Radar (RADAR), Guangzhou, China, Oct. 2016, pp. 1–4.
- S. K. Leem, F. Khan, and S. H. Cho, “Detecting mid-air gestures for digit writing with radio sensors and a CNN,” IEEE Trans. Instrum. Meas., vol. 69, no. 4, pp. 1066–1081, Apr. 2020.
- J. S. Suh, S. Ryu, B. Han, J. Choi, J. Kim, and S. Hong, “24 GHz FMCW radar system for real-time hand gesture recognition using LSTM,” in Proc. IEEE Asia-Pacific Microw. Conf (APMC), Kyoto, Japan, Nov. 2018, pp. 860–862.
- K. Joshi, D. Bharadia, M. Kotaru, and S. Katti, “WiDeo: Fine-grained device-free motion tracing using RF backscatter,” in Proc. 12th USENIX Symp. Networked Syst. Des. Implement. (NSDI), Oakland, CA, USA, May 2015, pp. 189–204.
- K. M. Cuomo, J. E. Pion, and J. T. Mayhan, “Ultrawide-band coherent processing,” IEEE Trans. Antennas Propag., vol. 47, no. 6, pp. 1094–1107, Jun. 1999.
- B. Tian, Z. Chen, and S. Xu, “Sparse subband fusion imaging based on parameter estimation of geometrical theory of diffraction model,” IET Radar, Sonar Navigat., vol. 8, no. 4, pp. 318–326, Jul. 2014.
- Y. Q. Zou, X. Z. Gao, X. Li, and Y. X. Liu, “A matrix pencil algorithm based multiband iterative fusion imaging method,” Sci. Rep., vol. 6, no. 1, pp. 1–10, Jan. 2016.
- J. Wang, P. Aubry, and A. Yarovoy, “Wavenumber-domain multiband signal fusion with matrix-pencil approach for high-resolution imaging,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 7, pp. 4037–4049, Apr. 2018.
- H. H. Zhang and R. S. Chen, “Coherent processing and superresolution technique of multi-band radar data based on fast sparse Bayesian learning algorithm,” IEEE Trans. Antennas Propag., vol. 62, no. 12, pp. 6217–6227, Dec. 2014.
- Y. Zhang, T. Wang, H. Zhao, Y. Zhang, and H. Zhao, “Multiple radar subbands fusion algorithm based on support vector regression in complex noise environment,” IEEE Trans. Antennas Propag., vol. 66, no. 1, pp. 381–392, Jan. 2018.
- J. Tian, J. Sun, G. Wang, Y. Wang, and W. Tan, “Multiband radar signal coherent fusion processing with IAA and apFFT,” IEEE Signal Process. Lett., vol. 20, no. 5, pp. 463–466, May 2013.
- Z. Li, S. Papson, and R. M. Narayanan, “Data-level fusion of multilook inverse synthetic aperture radar images,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 5, pp. 1394–1406, Apr. 2008.
- T. Sarkar and O. Pereira, “Using the matrix pencil method to estimate the parameters of a sum of complex exponentials,” IEEE Antennas Propag. Mag., vol. 37, no. 1, pp. 48–55, Feb. 1995.
- G. Álvarez Narciandi, M. López-Portugués, F. Las-Heras, and J. Laviada, “Freehand, agile, and high-resolution imaging with compact mm-Wave radar,” IEEE Access, vol. 7, pp. 95 516–95 526, Jul. 2019.
- H. F. Álvarez, G. ÁLvarez-Narciandi, F. Las-Heras, and J. Laviada, “System based on compact mmWave radar and natural body movement for assisting visually impaired people,” IEEE Access, vol. 9, pp. 125 042–125 051, Sep. 2021.
- Z. Long, T. Wang, C. You, Z. Yang, K. Wang, and J. Liu, “Terahertz image super-resolution based on a deep convolutional neural network,” Appl. Opt., vol. 58, no. 10, pp. 2731–2735, Apr. 2019.
- Y. Li, W. Hu, X. Zhang, Z. Xu, J. Ni, and L. P. Ligthart, “Adaptive terahertz image super-resolution with adjustable convolutional neural network,” Opt. Express, vol. 28, no. 15, pp. 22 200–22 217, Jul. 2020.
- Z. Han, W. Hu, Y. Li, Z. Xu, Y. Zhao, J. Ni, and L. Ligthart, “Terahertz image restoration with “zero-shot” super-resolution,” in Proc. IEEE CSRSWTC, Fuzhou, China, Dec. 2020, pp. 1–3.
- M. Wang, S. Wei, J. Shi, Y. Wu, Q. Qu, Y. Zhou, X. Zeng, and B. Tian, “CSR-Net: A novel complex-valued network for fast and precise 3-D microwave sparse reconstruction,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 13, pp. 4476–4492, Aug. 2020.
- M. Wang, S. Wei, J. Liang, S. Liu, J. Shi, and X. Zhang, “Lightweight FISTA-inspired sparse reconstruction network for mmW 3-D holography,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–20, Jul. 2021.
- R. J. Jost and A. Uppuluri, “MATLAB-based toolkit for an introductory course in SAR image processing,” in Proc. IEEE Radar Conf. (RadarConf), Arlington, VA, USA, May 2005, pp. 685–690.
- S. Auer, R. Bamler, and P. Reinartz, “RaySAR - 3D SAR simulator: now open source,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Beijing, China, Jul. 2016, pp. 6730–6733.
- R. Kedzierawski, W. Czarnecki, C. Leśnik, and J.-M. Le Caillec, “MATLAB/simulink applications for SAR system design with FPGA,” in Proc. 12th Int. Radar Symp. (IRS), Leipzig, Germany, Sep. 2011, pp. 35–40.
- R. Deo, A. Jamod, V. D. R. Gopu, and Y. S. Rao, “MATLAB based SAR signal processor for educational use,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Munich, Germany, Jul. 2012, pp. 5318–5321.
- S. Mehta and M. Rastegari, “MobileViT: light-weight, general-purpose, and mobile-friendly vision transformer,” arXiv preprint arXiv:2110.02178, Oct. 2021.
- M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Salt Lake City, Utah, USA, Jun. 2018, pp. 4510–4520.
- J. W. Smith and M. Torlak, “Efficient 3-D near-field MIMO-SAR imaging for irregular scanning geometries,” IEEE Access, vol. 10, pp. 10 283–10 294, Jan. 2022.
- G. Álvarez Narciandi, J. Laviada, and F. Las-Heras, “Freehand mm-Wave imaging with a compact MIMO radar,” IEEE Trans. Antennas Propag., vol. 69, no. 2, pp. 1224–1229, Feb. 2021.
- P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarial networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, Jan. 2017, pp. 1125–1134.
- Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A convnet for the 2020s,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), New Orleans, LA, USA, Jun. 2022, pp. 11 966–11 976.
- C. Wang, Q. Zhang, J. Hu, C. Li, S. Shi, and G. Fang, “An efficient algorithm based on CSA for THz stepped-frequency SAR imaging,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, Dec. 2020.
- M. E. Yanik and M. Torlak, “Millimeter-wave near-field imaging with two-dimensional SAR data,” in Proc. SRC Techcon, no. P093929, Austin, TX, USA, Sep. 2018.
- T. Winkler, “Making motion musical: Gesture mapping strategies for interactive computer music,” in Proc. 21st Int. Comput. Music Conf. (ICMC), Banff, AB, Canada, Sep. 1995, pp. 261–264.
- J. Wang, P. Aubry, and A. Yarovoy, “3-D short-range imaging with irregular MIMO arrays using NUFFT-based range migration algorithm,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 7, pp. 4730–4742, Jan. 2020.
- J. W. Smith and M. Torlak, “Survey of emerging systems and algorithms for near-field THz SAR imaging,” in Proc. IEEE, to be submitted.
- J. Baek, J. Kim, and E. Kim, “Comparison study of different feature classifiers for hand posture classification,” in Proc. 13th Int. Conf. Control Autom. Syst. (ICCAS), Gwangu, Korea, Oct. 2013, pp. 683–687.
- M. Matilainen, P. Sangi, J. Holappa, and O. Silvén, “OUHANDS database for hand detection and pose recognition,” in Proc. 6th Int. Conf. Image Process. Theory Tools Appl. (IPTA), Oulu, Finland, Dec. 2016, pp. 1–5.
- A. Anaz, M. Skubic, J. Bridgeman, and D. M. Brogan, “Classification of therapeutic hand poses using convolutional neural networks,” in Proc. 40th Annu. Int. Conf. IEEE Eng. Med. Biol. (EMBC), Honolulu, HI, USA, Jul. 2018, pp. 3874–3877.
- F. Bernardo, N. Arner, and P. Batchelor, “O soli mio: exploring millimeter wave radar for musical interaction,” in Proc. 17th Int. Conf. New Interfaces for Musical Expression (NIME), Aalborg, Denmark, May 2017, pp. 283–286.
- D. Griffin and J. Lim, “Signal estimation from modified short-time fourier transform,” IEEE Trans. Acoust. Speech, Signal Process., vol. 32, no. 2, pp. 236–243, Apr. 1984.
- B. Dekker, S. Jacobs, A. S. Kossen, M. C. Kruithof, A. G. Huizing, and M. Geurts, “Gesture recognition with a low power FMCW radar and a deep convolutional neural network,” in Proc. 14th Eur. Radar Conf. (EuRAD), Nuremberg, Germany, Oct. 2017, pp. 163–166.
- O. Li, J. He, K. Zeng, Z. Yu, X. Du, Y. Liang, G. Wang, Y. Chen, P. Zhu, W. Tong, D. Lister, and L. Ibbotson, “Integrated sensing and communication in 6G a prototype of high resolution THz sensing on portable device,” in Proc. IEEE Eur. Conf. Netw. Commun. 6G Summit (EuCNC/6G), Porto, Portugal, Jun. 2021, pp. 544–549.
- K. Basrawi and R. Dill, “Reverse engineering the Soli radar API for military applications,” in Proc. IEEE Radar Conf. (RadarConf), Jun. 2021, pp. 1–8.
- J. W. Smith, O. Furxhi, and M. Torlak, “An FCNN-based super-resolution mmWave radar framework for contactless musical instrument interface,” IEEE Trans. Multimedia, vol. 24, pp. 2315–2328, May 2021.
- G. Álvarez Narciandi, J. Laviada, Y. Álvarez López, G. Ducournau, C. Luxey, C. Belem-Goncalves, F. Gianesello, N. Nachabe, C. D. Rio, and F. Las-Heras, “Freehand system for antenna diagnosis based on amplitude-only data,” IEEE Trans. Antennas Propag., vol. 69, no. 8, pp. 4988–4998, Feb. 2021.
- H. Wymeersch, G. Seco-Granados, G. Destino, D. Dardari, and F. Tufvesson, “5G mmWave positioning for vehicular networks,” IEEE Wireless Commun., vol. 24, no. 6, pp. 80–86, Dec. 2017.
- Z. Hajiakhondi-Meybodi, M. Salimibeni, K. N. Plataniotis, and A. Mohammadi, “Bluetooth low energy-based angle of arrival estimation via switch antenna array for indoor localization,” in Proc. 23rd Int. Conf. Inf. Fusion (FUSION), Rustenburg, South Africa, Jul. 2020, pp. 1–6.
- M. E. Yanik, D. Wang, and M. Torlak, “3-D MIMO-SAR imaging using multi-chip cascaded millimeter-wave sensors,” in Proc. IEEE Global Conf. Signal Inf. Process. (GlobalSIP), Ottawa, ON, Canada, Nov. 2019, pp. 1–5.
- C. F. Baumgartner, K. Kamnitsas, J. Matthew, T. P. Fletcher, S. Smith, L. M. Koch, B. Kainz, and D. Rueckert, “SonoNet: Real-time detection and localisation of fetal standard scan planes in freehand ultrasound,” IEEE Trans. Med. Imaging, vol. 36, no. 11, pp. 2204–2215, Jul. 2017.
- J. Blackall, G. Penney, A. King, and D. Hawkes, “Alignment of sparse freehand 3-D ultrasound with preoperative images of the liver using models of respiratory motion and deformation,” IEEE Trans. Med. Imaging, vol. 24, no. 11, pp. 1405–1416, Oct. 2005.
- M. W. Gilbertson and B. W. Anthony, “Force and position control system for freehand ultrasound,” IEEE Trans. Robot., vol. 31, no. 4, pp. 835–849, Jun. 2015.
- X. Zeng, Y. Ma, Z. Li, J. Wu, and J. Yang, “A near-field fast time-frequency joint 3-D imaging algorithm based on aperture linearization,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Brussels, Belgium, Oct. 2021, pp. 5163–5166.
- B. Fan, J. Gao, H. Li, Z. Jiang, and Y. He, “Near-field 3D SAR imaging using a scanning linear MIMO array with arbitrary topologies,” IEEE Access, vol. 8, pp. 6782–6791, Dec. 2019.
- J. H. G. Ender and J. Klare, “System architectures and algorithms for radar imaging by MIMO-SAR,” in Proc. IEEE Radar Conf. (RadarConf), Pasadena, CA, USA, May 2009, pp. 1–6.
- F. Roos, J. Bechter, C. Knill, B. Schweizer, and C. Waldschmidt, “Radar sensors for autonomous driving: Modulation schemes and interference mitigation,” IEEE Microw. Mag., vol. 20, no. 9, pp. 58–72, Aug. 2019.
- L. Greengard and J.-Y. Lee, “Accelerating the nonuniform fast Fourier transform,” SIAM Rev., vol. 46, no. 3, pp. 443–454, Aug. 2006.
- T. Zhang and X.-G. Xia, “OFDM synthetic aperture radar imaging with sufficient cyclic prefix,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 1, pp. 394–404, Jan. 2015.
- J. W. Smith, Y. Alimam, G. Vedula, and M. Torlak, “A vision transformer approach for efficient near-field SAR super-resolution under array perturbation,” in Proc. IEEE Tex. Symp. Wirel. Microw. Circuits Syst. (WMCS), Waco, TX, USA, Apr. 2022, pp. 1–6.
- C. Vasileiou, J. W. Smith, S. Thiagarajan, M. Nigh, Y. Makris, and M. Torlak, “Efficient CNN-based super resolution algorithms for mmWave mobile radar imaging,” in Proc. IEEE Int. Conf. Image Process. (ICIP), Bourdeaux, France, Oct. 2022, pp. 3803–3807.
- Q. Guo, J. Liang, T. Chang, and H.-L. Cui, “Millimeter-wave imaging with accelerated super-resolution range migration algorithm,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 11, pp. 4610–4621, Jul. 2019.
- L. Qiao, Y. Wang, Z. Shen, Z. Zhao, and Z. Chen, “Compressive sensing for direct millimeter-wave holographic imaging,” Appl. Opt., vol. 54, no. 11, pp. 3280–3289, Apr. 2015.
- H.-S. Shin and J.-T. Lim, “Range migration algorithm for airborne squint mode spotlight SAR imaging,” IET Radar, Sonar, Nav., vol. 1, no. 1, pp. 77–82, Feb. 2007.
- X. Zhuge and A. G. Yarovoy, “Three-dimensional near-field MIMO array imaging using range migration techniques,” IEEE Trans. Image Process., vol. 21, no. 6, pp. 3026–3033, Feb. 2012.
- R. Zhu, J. Zhou, G. Jiang, and Q. Fu, “Range migration algorithm for near-field MIMO-SAR imaging,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 12, pp. 2280–2284, Nov. 2017.
- J. Ding, M. Kahl, O. Loffeld, and P. H. Bolivar, “THz 3-D image formation using SAR techniques: simulation, processing and experimental results,” IEEE Trans. Terahertz Sci. Technol., vol. 3, no. 5, pp. 606–616, Jul. 2013.
- A. Batra, M. Wiemeler, D. Göhringer, and T. Kaiser, “Sub-mm resolution 3D SAR imaging at 1.5 THz,” in Proc. 4th Int. Workshop Mob. Terahertz Syst. (IWMTS), Essen, Germany, Jul. 2021, pp. 1–5.
- A. Batra, J. Barowski, D. Damyanov, M. Wiemeler, I. Rolfes, T. Schultze, J. C. Balzer, D. Göhringer, and T. Kaiser, “Short-range SAR imaging from GHz to THz waves,” IEEE J. Microwaves, vol. 1, no. 2, pp. 574–585, Apr. 2021.
- X. Yang, Y. Pi, T. Liu, and H. Wang, “Three-dimensional imaging of space debris with space-based terahertz radar,” IEEE Sensors J., vol. 18, no. 3, pp. 1063–1072, Dec. 2018.
- T. Jaeschke, C. Bredendiek, and N. Pohl, “3D FMCW SAR imaging based on a 240 GHz SiGe transceiver chip with integrated antennas,” in Proc. Ger. Microw. Conf (GeMiC), Aachen, Germany, Mar. 2014, pp. 1–4.
- J. Moll, P. Schops, and V. Krozer, “Towards three-dimensional millimeter-wave radar with the bistatic fast-factorized back-projection algorithm—potential and limitations,” IEEE Trans. Terahertz Sci. Technol., vol. 2, no. 4, pp. 432–440, Jun. 2012.
- L. A. Gorham and L. J. Moore, “SAR image formation toolbox for MATLAB,” in Proc. SPIE, vol. 7699, Orlando, FL, USA, Apr. 2010, p. 769906.
- B. Schweizer, C. Knill, D. Schindler, and C. Waldschmidt, “Stepped-carrier OFDM-radar processing scheme to retrieve high-resolution range-velocity profile at low sampling rate,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 3, pp. 1610–1618, Mar. 2018.
- H. Sarieddeen, N. Saeed, T. Y. Al-Naffouri, and M.-S. Alouini, “Next generation terahertz communications: A rendezvous of sensing, imaging, and localization,” IEEE Commun. Mag., vol. 58, no. 5, pp. 69–75, May 2020.
- A. Bourdoux, U. Ahmad, D. Guermandi, S. Brebels, A. Dewilde, and W. Van Thillo, “PMCW waveform and MIMO technique for a 79 GHz CMOS automotive radar,” in Proc. IEEE Radar Conf. (RadarConf), Philadelphia, PA, USA, Jun. 2016, pp. 1–5.
- H. Iqbal, A. Löffler, M. N. Mejdoub, and F. Gruson, “Realistic SAR implementation for automotive applications,” in Proc. 17th Eur. Radar Conf. (EuRAD), Utrecht, Netherlands, Jan. 2021, pp. 306–309.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Long Beach, CA, USA, Dec. 2017, pp. 5998–6008.
- A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
- Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Montreal, Canada, Oct. 2021, pp. 10 012–10 022.
- H. Dong, L. Zhang, and B. Zou, “Exploring vision transformers for polarimetric SAR image classification,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–15, Nov. 2021.
- L. Zheng, J. Bai, X. Zhu, L. Huang, C. Shan, Q. Wu, and L. Zhang, “Dynamic hand gesture recognition in in-vehicle environment based on FMCW radar and transformer,” Sensors, vol. 21, no. 19, p. 6368, Sep. 2021.
- Q. Cheng, A. A. Ihalage, Y. Liu, and Y. Hao, “Compressive sensing radar imaging with convolutional neural networks,” IEEE Access, vol. 8, pp. 212 917–212 926, Nov. 2020.
- S. Huang, J. Qian, Y. Wang, X. Yang, and L. Yang, “Through-the-wall radar super-resolution imaging based on cascade U-Net,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Yokohama, Japan, Aug. 2019, pp. 2933–2936.
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Montreal, Canada, Dec. 2014.
- O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in Proc. MICCAI, Munich, Germany, Oct. 2015, pp. 234–241.
- M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint arXiv:1411.1784, Nov. 2014.
- K. Armanious, C. Jiang, M. Fischer, T. Küstner, T. Hepp, K. Nikolaou, S. Gatidis, and B. Yang, “MedGAN: Medical image translation using GANs,” Comput. Med. Imaging Graph., vol. 79, p. 101684, 2020.
- K. Armanious, S. Abdulatif, F. Aziz, U. Schneider, and B. Yang, “An adversarial super-resolution remedy for radar design trade-offs,” in Proc. 27th Eur. Signal Process. Conf. (EUSIPCO), A Coruna, Spain, Sep. 2019, pp. 1–5.
- C. Wang, C. Xu, C. Wang, and D. Tao, “Perceptual adversarial networks for image-to-image transformation,” IEEE Trans. Image Process., vol. 27, no. 8, pp. 4066–4079, Aug. 2018.
- P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional adversarial networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017, pp. 1125–1134.
- Y. Guo, Y. Li, L. Wang, and T. Rosing, “Depthwise convolution is all you need for learning multiple visual domains,” in Proc. 35th AAAI Conf. Artif. Intell. (AAAI), vol. 33, no. 01, Honolulu, HI, USA, Jan. 2019, pp. 8368–8375.
- A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient convolutional neural networks for mobile vision applications,” arXiv preprint arXiv:1704.04861, Apr. 2017.
- J. W. Smith and M. Torlak, “Deep learning-based multiband signal fusion for 3-D SAR super-resolution,” IEEE Trans. Aerosp. Electron. Syst., pp. 1–17, Apr. 2023.
- S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for deep neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017, pp. 1492–1500.
- Y. Xie, M. B. Wakin, and G. Tang, “Contaminated multiband signal identification via deep learning,” in Proc. IEEE Stat. Signal Process. Workshop (SSP), Rio de Janeiro, Brazil, Jul. 2021, pp. 76–80.
- Y. Sun, X. Liang, H. Fan, M. Imran, and H. Heidari, “Visual hand tracking on depth image using 2-D matched filter,” in Proc. UK/China Emerg. Technol. (UCET), Glasgow, United Kingdom, Aug. 2019, pp. 1–4.
- R. Polfreman, “Multi-modal instrument: towards a platform for comparative controller evaluation,” in Proc. 37th Int. Comput. Music Conf. (ICMC), Huddersfield, United Kingdom, Jul. 2011, pp. 147–150.
- S. Rao, “Intro to mmWave sensing: FMCW radars,” June 26, 2017. Accessed: Apr. 2021. [Online]. Available: https://training.ti.com/node/1139153
- H. Kim, S. You, B. J. Jeong, and W. Byun, “Azimuth angle resolution improvement technique with neural network,” in Proc. Int. Conf. Inf. Commun. Technol. Converg. (ICTC), Jeju, Korea, Oct. 2020, pp. 1384–1387.
- J. García, A. Gardel, I. Bravo, J. L. Lázaro, and M. Martínez, “Tracking people motion based on extended condensation algorithm,” IEEE Trans. Cybern., vol. 43, no. 3, pp. 606–618, 2013.
- G. Izacard, S. Mohan, and C. Fernandez-Granda, “Data-driven estimation of sinusoid frequencies,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), vol. 32, Vancouver, BC, Canada, Dec. 2019, pp. 5127–5137.
- V. T. Vu, M. I. Pettersson, A. Batra, and T. Kaiser, “Fourier transform of SAR data cube and 3-D range migration algorithm,” IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 3, pp. 2584–2591, Dec. 2022.
- X. Wang and T. Jiang, “Multi-band synthesis of wideband radar based on compressed sensing,” in Proc. Int. Appl. Comput. Electromagn. Soc. Symp. China (ACES-China), Nanjing, China, Aug. 2019, pp. 1–2.
- H. Zhang, R. Song, S. Chen, G. Wang, Y. Jia, and C. Yan, “Target imaging based on generative adversarial nets in through-wall radar imaging,” in Proc. Int. Conf. Control Autom. Inf. Sci. (ICCAIS), Chengdu, China, Oct. 2019, pp. 1–6.
- P. Pan, Y. Zhang, Z. Deng, and G. Wu, “Complex-valued frequency estimation network and its applications to superresolution of radar range profiles,” IEEE Trans. Geosci. Remote Sens., pp. 1–12, Oct. 2021.
- K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 770–778.
- S. Iizuka, E. Simo-Serra, and H. Ishikawa, “Globally and locally consistent image completion,” ACM Trans. Graph., vol. 36, no. 4, pp. 1–14, Jul. 2017.
- W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the effective receptive field in deep convolutional neural networks,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), Barcelona, Spain, Dec. 2016, pp. 4898–4906.
- X. Yin, Z. Hu, J. Zheng, B. Li, and Y. Zuo, “Study on radar echo-filling in an occlusion area by a deep learning algorithm,” Remote Sensing, vol. 13, no. 9, p. 1779, 2021.