Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Position and Rotation Invariant Sign Language Recognition from 3D Kinect Data with Recurrent Neural Networks (2010.12669v2)

Published 23 Oct 2020 in cs.CV and cs.HC

Abstract: Sign language is a gesture-based symbolic communication medium among speech and hearing impaired people. It also serves as a communication bridge between non-impaired and impaired populations. Unfortunately, in most situations, a non-impaired person is not well conversant in such symbolic languages restricting the natural information flow between these two categories. Therefore, an automated translation mechanism that seamlessly translates sign language into natural language can be highly advantageous. In this paper, we attempt to perform recognition of 30 basic Indian sign gestures. Gestures are represented as temporal sequences of 3D maps (RGB + depth), each consisting of 3D coordinates of 20 body joints captured by the Kinect sensor. A recurrent neural network (RNN) is employed as the classifier. To improve the classifier's performance, we use geometric transformation for the alignment correction of depth frames. In our experiments, the model achieves 84.81% accuracy.

Summary

We haven't generated a summary for this paper yet.