Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comparative Analysis of Techniques and Algorithms for Recognising Sign Language (2305.13941v2)

Published 5 May 2023 in cs.CV, cs.AI, and cs.LG

Abstract: Sign language is a visual language that enhances communication between people and is frequently used as the primary form of communication by people with hearing loss. Even so, not many people with hearing loss use sign language, and they frequently experience social isolation. Therefore, it is necessary to create human-computer interface systems that can offer hearing-impaired people a social platform. Most commercial sign language translation systems now on the market are sensor-based, pricey, and challenging to use. Although vision-based systems are desperately needed, they must first overcome several challenges. Earlier continuous sign language recognition techniques used hidden Markov models, which have a limited ability to include temporal information. To get over these restrictions, several machine learning approaches are being applied to transform hand and sign language motions into spoken or written language. In this study, we compare various deep learning techniques for recognising sign language. Our survey aims to provide a comprehensive overview of the most recent approaches and challenges in this field.

Citations (2)

Summary

We haven't generated a summary for this paper yet.