Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Automated Metadata Harmonization Using Entity Resolution & Contextual Embedding (2010.11827v2)

Published 17 Oct 2020 in cs.DB and cs.LG

Abstract: ML Data Curation process typically consist of heterogeneous & federated source systems with varied schema structures; requiring curation process to standardize metadata from different schemas to an inter-operable schema. This manual process of Metadata Harmonization & cataloging slows efficiency of ML-Ops lifecycle. We demonstrate automation of this step with the help of entity resolution methods & also by using Cogntive Database's Db2Vec embedding approach to capture hidden inter-column & intra-column relationships which detect similarity of metadata and then predict metadata columns from source schemas to any standardized schemas. Apart from matching schemas, we demonstrate that it can also infer the correct ontological structure of the target data model.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.