Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Concentration of Measure Framework to study convex problems and other implicit formulation problems in machine learning (2010.09877v2)

Published 19 Oct 2020 in math.PR and stat.ML

Abstract: This paper provides a framework to show the concentration of solutions $Y*$ to convex minimizing problem where the objective function $\phi(X)(Y)$ depends on some random vector $X$ satisfying concentration of measure hypotheses. More precisely, the convex problem translates into a contractive fixed point equation that ensure the transmission of the concentration from $X$ to $Y*$. This result is of central interest to characterize many machine learning algorithms which are defined through implicit equations (e.g., logistic regression, lasso, boosting, etc.). Based on our framework, we provide precise estimations for the first moments of the solution $Y*$, when $X= (x_1,\ldots, x_n)$ is a data matrix of independent columns and $\phi(X)(y)$ writes as a sum $\frac{1}{n}\sum_{i=1}n h_i(x_iTY)$. That allows to describe the behavior and performance (e.g., generalization error) of a wide variety of machine learning classifiers.

Summary

We haven't generated a summary for this paper yet.