Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 26 tok/s
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 463 tok/s Pro
Kimi K2 219 tok/s Pro
2000 character limit reached

Failure Prediction by Confidence Estimation of Uncertainty-Aware Dirichlet Networks (2010.09865v1)

Published 19 Oct 2020 in cs.LG and cs.CV

Abstract: Reliably assessing model confidence in deep learning and predicting errors likely to be made are key elements in providing safety for model deployment, in particular for applications with dire consequences. In this paper, it is first shown that uncertainty-aware deep Dirichlet neural networks provide an improved separation between the confidence of correct and incorrect predictions in the true class probability (TCP) metric. Second, as the true class is unknown at test time, a new criterion is proposed for learning the true class probability by matching prediction confidence scores while taking imbalance and TCP constraints into account for correct predictions and failures. Experimental results show our method improves upon the maximum class probability (MCP) baseline and predicted TCP for standard networks on several image classification tasks with various network architectures.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.