2000 character limit reached
Criniferous entire maps with absorbing Cantor bouquets (2010.09845v2)
Published 19 Oct 2020 in math.DS and math.CV
Abstract: It is known that, for many transcendental entire functions in the Eremenko-Lyubich class $\mathcal{B}$, every escaping point can eventually be connected to infinity by a curve of escaping points. When this is the case, we say that the functions are criniferous. In this paper, we extend this result to a new class of maps in $\mathcal{B}$. Furthermore, we show that if a map belongs to this class, then its Julia set contains a Cantor bouquet; in other words, it is a subset of $\mathbb{C}$ ambiently homeomorphic to a straight brush.