Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Criniferous entire maps with absorbing Cantor bouquets (2010.09845v2)

Published 19 Oct 2020 in math.DS and math.CV

Abstract: It is known that, for many transcendental entire functions in the Eremenko-Lyubich class $\mathcal{B}$, every escaping point can eventually be connected to infinity by a curve of escaping points. When this is the case, we say that the functions are criniferous. In this paper, we extend this result to a new class of maps in $\mathcal{B}$. Furthermore, we show that if a map belongs to this class, then its Julia set contains a Cantor bouquet; in other words, it is a subset of $\mathbb{C}$ ambiently homeomorphic to a straight brush.

Summary

We haven't generated a summary for this paper yet.