Papers
Topics
Authors
Recent
Search
2000 character limit reached

Combinatorics of criniferous entire maps with escaping critical values

Published 19 Oct 2020 in math.DS and math.CV | (2010.09855v1)

Abstract: A transcendental entire function is called criniferous if every point in its escaping set can eventually be connected to infinity by a curve of escaping points. Many transcendental entire functions with bounded singular set have this property, and this class has recently attracted much attention in complex dynamics. In the presence of escaping critical values, these curves break or split at (preimages of) critical points. In this paper, we develop combinatorial tools that allow us to provide a complete description of the escaping set of any criniferous function without asymptotic values on its Julia set. In particular, our description precisely reflects the splitting phenomenon. This combinatorial structure provides the foundation for further study of this class of functions. For example, we use these results in [arXiv:1905.03778] to give the first full description of the topological dynamics of a class of transcendental entire maps with unbounded postsingular set.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.