Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strong solutions of the double phase parabolic equations with variable growth (2010.08306v2)

Published 16 Oct 2020 in math.AP

Abstract: This paper addresses the questions of existence and uniqueness of strong solutions to the homogeneous Dirichlet problem for the double phase equation with operators of variable growth: [ u_t - div \left(|\nabla u|{p(z)-2} \nabla u+ a(z) |\nabla u|{q(z)-2} \nabla u \right) = F(z,u) \quad \text{in $Q_T=\Omega \times (0,T)$} ] where $\Omega \subset \mathbb{R}N$, $N \geq 2$, is a bounded domain with the boundary $\partial\Omega\in C2$, $z=(x,t)\in Q_T$, $a:\bar Q_T \mapsto \mathbb{R}$ is a given nonnegative coefficient, and the nonlinear source term has the form [ F(z,v)=f_0(z)+b(z)|v|{\sigma(z)-2}v. ] The variable exponents $p$, $q$, $\sigma$ are given functions defined on $\bar{Q}T$, $p$, $q$ are Lipschitz-continuous and [ \dfrac{2N}{N+2}<p-\leq p(z) \leq q(z) < p(z) + {\frac{r}{2}} \ \ \text{with $0<r<r\ast=\frac{4p-}{2N + p-(N+2)}$,\quad $p-=\min{\bar{Q}_T}p(z)$}. ] We find conditions on the functions $f_0$, $a$, $b$, $\sigma$ and $ u_0$ sufficient for the existence of a unique strong solution with the following global regularity and integrability properties: [ \begin{split} u_t \in L{2}(Q_T),\quad & \text{$|\nabla u|{s(z)} \in L{\infty}(0,T;L1(\Omega))$ with $ s(z)=\max{2,p(z)}$}, & |\nabla u|{p(z)+\delta}\in L1(Q_T)\quad \text{for every $0<\delta< r*$}. {split} ] The same results are established for the equation with the regularized flux [ (\epsilon2+|\nabla u|2){\frac{p(z)-2}{2}}\nabla u + a(z) (\epsilon2+|\nabla u|2){\frac{q(z)-2}{2}}\nabla u, \qquad \epsilon>0. ]

Summary

We haven't generated a summary for this paper yet.