Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal global second-order regularity and improved integrability for parabolic equations with variable growth (2305.10877v3)

Published 18 May 2023 in math.AP

Abstract: We consider the homogeneous Dirichlet problem for the parabolic equation [ u_t- \operatorname{div} \left(|\nabla u|{p(x,t)-2} \nabla u\right)= f(x,t) + F(x,t, u, \nabla u) ] in the cylinder $Q_T:=\Omega\times (0,T)$, where $\Omega\subset \mathbb{R}N$, $N\geq 2$, is a $C{2}$-smooth or convex bounded domain. It is assumed that $p\in C{0,1}(\overline{Q}_T)$ is a given function, and that the nonlinear source $F(x,t,s, \xi)$ has a proper power growth with respect to $s$ and $\xi$. It is shown that if $p(x,t)>\frac{2(N+1)}{N+2}$, $f\in L2(Q_T)$, $|\nabla u_0|{p(x,0)}\in L1(\Omega)$, then the problem has a solution $u\in C0([0,T];L2(\Omega))$ with $|\nabla u|{p(x,t)} \in L{\infty}(0,T;L1(\Omega))$, $u_t\in L2(Q_T)$, obtained as the limit of solutions to the regularized problems in the parabolic H\"older space. The solution possesses the following global regularity properties: [ \begin{split} & |\nabla u|{2(p(x,t)-1)+r}\in L1(Q_T)\quad \text{for any $0 < r < \frac{4}{N+2}$}, \ & |\nabla u|{p(x,t)-2} \nabla u \in W{1,2}(Q_T)N. \end{split} ]

Summary

We haven't generated a summary for this paper yet.