Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing the Quantitative Spacetime Hypothesis using Artificial Narrative Comprehension (II) : Establishing the Geometry of Invariant Concepts, Themes, and Namespaces (2010.08125v1)

Published 23 Sep 2020 in cs.AI and cs.IR

Abstract: Given a pool of observations selected from a sensor stream, input data can be robustly represented, via a multiscale process, in terms of invariant concepts, and themes. Applying this to episodic natural language data, one may obtain a graph geometry associated with the decomposition, which is a direct encoding of spacetime relationships for the events. This study contributes to an ongoing application of the Semantic Spacetime Hypothesis, and demonstrates the unsupervised analysis of narrative texts using inexpensive computational methods without knowledge of linguistics. Data streams are parsed and fractionated into small constituents, by multiscale interferometry, in the manner of bioinformatic analysis. Fragments may then be recombined to construct original sensory episodes---or form new narratives by a chemistry of association and pattern reconstruction, based only on the four fundamental spacetime relationships. There is a straightforward correspondence between bioinformatic processes and this cognitive representation of natural language. Features identifiable as concepts' andnarrative themes' span three main scales (micro, meso, and macro). Fragments of the input act as symbols in a hierarchy of alphabets that define new effective languages at each scale.

Summary

We haven't generated a summary for this paper yet.