Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
48 tokens/sec
GPT-5 Medium
15 tokens/sec
GPT-5 High Premium
23 tokens/sec
GPT-4o
104 tokens/sec
DeepSeek R1 via Azure Premium
77 tokens/sec
GPT OSS 120B via Groq Premium
466 tokens/sec
Kimi K2 via Groq Premium
201 tokens/sec
2000 character limit reached

State-Based Confidence Bounds for Data-Driven Stochastic Reachability Using Hilbert Space Embeddings (2010.08036v2)

Published 15 Oct 2020 in math.OC, cs.SY, and eess.SY

Abstract: In this paper, we compute finite sample bounds for data-driven approximations of the solution to stochastic reachability problems. Our approach uses a nonparametric technique known as kernel distribution embeddings, and provides probabilistic assurances of safety for stochastic systems in a model-free manner. By implicitly embedding the stochastic kernel of a Markov control process in a reproducing kernel Hilbert space, we can approximate the safety probabilities for stochastic systems with arbitrary stochastic disturbances as simple matrix operations and inner products. We present finite sample bounds for point-based approximations of the safety probabilities through construction of probabilistic confidence bounds that are state- and input-dependent. One advantage of this approach is that the bounds are responsive to non-uniformly sampled data, meaning that tighter bounds are feasible in regions of the state- and input-space with more observations. We numerically evaluate the approach, and demonstrate its efficacy on a neural network-controlled pendulum system.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.