Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Identifying and mitigating noise sources in precision pulsar timing data sets (2010.06109v2)

Published 13 Oct 2020 in astro-ph.HE, astro-ph.IM, and gr-qc

Abstract: Pulsar timing array projects measure the pulse arrival times of millisecond pulsars for the primary purpose of detecting nanohertz-frequency gravitational waves. The measurements include contributions from a number of astrophysical and instrumental processes, which can either be deterministic or stochastic. It is necessary to develop robust statistical and physical models for these noise processes because incorrect models diminish sensitivity and may cause a spurious gravitational wave detection. Here we characterise noise processes for the 26 pulsars in the second data release of the Parkes Pulsar Timing Array using Bayesian inference. In addition to well-studied noise sources found previously in pulsar timing array data sets such as achromatic timing noise and dispersion measure variations, we identify new noise sources including time-correlated chromatic noise that we attribute to variations in pulse scattering. We also identify "exponential dip" events in four pulsars, which we attribute to magnetospheric effects as evidenced by pulse profile shape changes observed for three of the pulsars. This includes an event in PSR J1713$+$0747, which had previously been attributed to interstellar propagation. We present noise models to be used in searches for gravitational waves. We outline a robust methodology to evaluate the performance of noise models and identify unknown signals in the data. The detection of variations in pulse profiles highlights the need to develop efficient profile domain timing methods.

Citations (41)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.