Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sink Location Problems in Dynamic Flow Grid Networks (2308.12651v2)

Published 24 Aug 2023 in cs.DS

Abstract: A dynamic flow network consists of a directed graph, where nodes called sources represent locations of evacuees, and nodes called sinks represent locations of evacuation facilities. Each source and each sink are given supply representing the number of evacuees and demand representing the maximum number of acceptable evacuees, respectively. Each edge is given capacity and transit time. Here, the capacity of an edge bounds the rate at which evacuees can enter the edge per unit time, and the transit time represents the time which evacuees take to travel across the edge. The evacuation completion time is the minimum time at which each evacuees can arrive at one of the evacuation facilities. Given a dynamic flow network without sinks, once sinks are located on some nodes or edges, the evacuation completion time for this sink location is determined. We then consider the problem of locating sinks to minimize the evacuation completion time, called the sink location problem. The problems have been given polynomial-time algorithms only for limited networks such as paths, cycles, and trees, but no polynomial-time algorithms are known for more complex network classes. In this paper, we prove that the 1-sink location problem can be solved in polynomial-time when an input network is a grid with uniform edge capacity and transit time.

Summary

We haven't generated a summary for this paper yet.