Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting Batch Normalization for Improving Corruption Robustness (2010.03630v4)

Published 7 Oct 2020 in cs.CV

Abstract: The performance of DNNs trained on clean images has been shown to decrease when the test images have common corruptions. In this work, we interpret corruption robustness as a domain shift and propose to rectify batch normalization (BN) statistics for improving model robustness. This is motivated by perceiving the shift from the clean domain to the corruption domain as a style shift that is represented by the BN statistics. We find that simply estimating and adapting the BN statistics on a few (32 for instance) representation samples, without retraining the model, improves the corruption robustness by a large margin on several benchmark datasets with a wide range of model architectures. For example, on ImageNet-C, statistics adaptation improves the top1 accuracy of ResNet50 from 39.2% to 48.7%. Moreover, we find that this technique can further improve state-of-the-art robust models from 58.1% to 63.3%.

Citations (77)

Summary

We haven't generated a summary for this paper yet.