Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Test-time Batch Statistics Calibration for Covariate Shift (2110.04065v1)

Published 6 Oct 2021 in cs.CV and cs.AI

Abstract: Deep neural networks have a clear degradation when applying to the unseen environment due to the covariate shift. Conventional approaches like domain adaptation requires the pre-collected target data for iterative training, which is impractical in real-world applications. In this paper, we propose to adapt the deep models to the novel environment during inference. An previous solution is test time normalization, which substitutes the source statistics in BN layers with the target batch statistics. However, we show that test time normalization may potentially deteriorate the discriminative structures due to the mismatch between target batch statistics and source parameters. To this end, we present a general formulation $\alpha$-BN to calibrate the batch statistics by mixing up the source and target statistics for both alleviating the domain shift and preserving the discriminative structures. Based on $\alpha$-BN, we further present a novel loss function to form a unified test time adaptation framework Core, which performs the pairwise class correlation online optimization. Extensive experiments show that our approaches achieve the state-of-the-art performance on total twelve datasets from three topics, including model robustness to corruptions, domain generalization on image classification and semantic segmentation. Particularly, our $\alpha$-BN improves 28.4\% to 43.9\% on GTA5 $\rightarrow$ Cityscapes without any training, even outperforms the latest source-free domain adaptation method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Fuming You (6 papers)
  2. Jingjing Li (98 papers)
  3. Zhou Zhao (219 papers)
Citations (49)

Summary

We haven't generated a summary for this paper yet.