Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vec2Instance: Parameterization for Deep Instance Segmentation (2010.02725v1)

Published 6 Oct 2020 in cs.CV, cs.LG, and eess.IV

Abstract: Current advances in deep learning is leading to human-level accuracy in computer vision tasks such as object classification, localization, semantic segmentation, and instance segmentation. In this paper, we describe a new deep convolutional neural network architecture called Vec2Instance for instance segmentation. Vec2Instance provides a framework for parametrization of instances, allowing convolutional neural networks to efficiently estimate the complex shapes of instances around their centroids. We demonstrate the feasibility of the proposed architecture with respect to instance segmentation tasks on satellite images, which have a wide range of applications. Moreover, we demonstrate the usefulness of the new method for extracting building foot-prints from satellite images. Total pixel-wise accuracy of our approach is 89\%, near the accuracy of the state-of-the-art Mask RCNN (91\%). Vec2Instance is an alternative approach to complex instance segmentation pipelines, offering simplicity and intuitiveness. The code developed under this study is available in the Vec2Instance GitHub repository, https://github.com/lakmalnd/Vec2Instance

Citations (2)

Summary

We haven't generated a summary for this paper yet.