Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unifying Instance and Panoptic Segmentation with Dynamic Rank-1 Convolutions (2011.09796v1)

Published 19 Nov 2020 in cs.CV

Abstract: Recently, fully-convolutional one-stage networks have shown superior performance comparing to two-stage frameworks for instance segmentation as typically they can generate higher-quality mask predictions with less computation. In addition, their simple design opens up new opportunities for joint multi-task learning. In this paper, we demonstrate that adding a single classification layer for semantic segmentation, fully-convolutional instance segmentation networks can achieve state-of-the-art panoptic segmentation quality. This is made possible by our novel dynamic rank-1 convolution (DR1Conv), a novel dynamic module that can efficiently merge high-level context information with low-level detailed features which is beneficial for both semantic and instance segmentation. Importantly, the proposed new method, termed DR1Mask, can perform panoptic segmentation by adding a single layer. To our knowledge, DR1Mask is the first panoptic segmentation framework that exploits a shared feature map for both instance and semantic segmentation by considering both efficacy and efficiency. Not only our framework is much more efficient -- twice as fast as previous best two-branch approaches, but also the unified framework opens up opportunities for using the same context module to improve the performance for both tasks. As a byproduct, when performing instance segmentation alone, DR1Mask is 10% faster and 1 point in mAP more accurate than previous state-of-the-art instance segmentation network BlendMask. Code is available at: https://git.io/AdelaiDet

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hao Chen (1006 papers)
  2. Chunhua Shen (404 papers)
  3. Zhi Tian (68 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.