Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal consistency and rates of convergence of multiclass prototype algorithms in metric spaces (2010.00636v2)

Published 1 Oct 2020 in cs.LG, math.ST, stat.ML, and stat.TH

Abstract: We study universal consistency and convergence rates of simple nearest-neighbor prototype rules for the problem of multiclass classification in metric paces. We first show that a novel data-dependent partitioning rule, named Proto-NN, is universally consistent in any metric space that admits a universally consistent rule. Proto-NN is a significant simplification of OptiNet, a recently proposed compression-based algorithm that, to date, was the only algorithm known to be universally consistent in such a general setting. Practically, Proto-NN is simpler to implement and enjoys reduced computational complexity. We then proceed to study convergence rates of the excess error probability. We first obtain rates for the standard $k$-NN rule under a margin condition and a new generalized-Lipschitz condition. The latter is an extension of a recently proposed modified-Lipschitz condition from $\mathbb Rd$ to metric spaces. Similarly to the modified-Lipschitz condition, the new condition avoids any boundness assumptions on the data distribution. While obtaining rates for Proto-NN is left open, we show that a second prototype rule that hybridizes between $k$-NN and Proto-NN achieves the same rates as $k$-NN while enjoying similar computational advantages as Proto-NN. However, as $k$-NN, this hybrid rule is not consistent in general.

Citations (19)

Summary

We haven't generated a summary for this paper yet.