Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Bayes consistency in metric spaces (1906.09855v7)

Published 24 Jun 2019 in cs.LG, math.ST, stat.ML, and stat.TH

Abstract: We extend a recently proposed 1-nearest-neighbor based multiclass learning algorithm and prove that our modification is universally strongly Bayes-consistent in all metric spaces admitting any such learner, making it an "optimistically universal" Bayes-consistent learner. This is the first learning algorithm known to enjoy this property; by comparison, the $k$-NN classifier and its variants are not generally universally Bayes-consistent, except under additional structural assumptions, such as an inner product, a norm, finite dimension, or a Besicovitch-type property. The metric spaces in which universal Bayes consistency is possible are the "essentially separable" ones -- a notion that we define, which is more general than standard separability. The existence of metric spaces that are not essentially separable is widely believed to be independent of the ZFC axioms of set theory. We prove that essential separability exactly characterizes the existence of a universal Bayes-consistent learner for the given metric space. In particular, this yields the first impossibility result for universal Bayes consistency. Taken together, our results completely characterize strong and weak universal Bayes consistency in metric spaces.

Citations (48)

Summary

We haven't generated a summary for this paper yet.