Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Spatial localisation beyond steady states in the neighbourhood of the Takens--Bogdanov bifurcation (2010.00360v1)

Published 1 Oct 2020 in nlin.PS and physics.flu-dyn

Abstract: The coincidence of a pitchfork and Hopf bifurcation at a Takens-Bogdanov (TB) bifurcation occurs in many physical systems such as double-diffusive convection, binary convection and magnetoconvection. Analysis of the associated normal form, in one dimension with periodic boundary condition, shows the existence of steady patterns, standing waves, modulated waves and travelling waves, where the values of coefficients of the terms in the normal form classify all possible different bifurcation scenarios in the neighbourhood of the TB bifurcation (Dangelmayr & Knobloch, 1987). In this work we develop a new and simple pattern-forming PDE model, based on the Swift-Hohenberg equation, adapted to have the TB normal form at onset, which allows us to explore the dynamics in a wide range of bifurcation scenarios, including in domains much wider than the lengthscale of the pattern. We identify two bifurcation scenarios in which coexistence between different types of solutions is indicated from the analysis of the normal form equation. In these scenarios, we look for spatially localised solutions by examining pattern formation in wide domains. We recover two types of localised states, that of a localised steady state in the background of the trivial state and that of a spatially localised travelling wave in the background of the trivial state which have previously been observed in other systems. Additionally, we identify two new types of spatially localised states: that of a localised steady state in a modulated wave background and that of a localised travelling wave in a steady state background. The PDE model is easy to solve numerically in large domains and so will allow further investigation of pattern formation with a TB bifurcation in one or more dimensions and the exploration of a range of background and foreground pattern combinations beyond steady states.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube