Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On compactness and $L^p$-regularity in the $\overline{\partial}$-Neumann problem (2009.13391v2)

Published 28 Sep 2020 in math.CV

Abstract: Let $\Omega$ be a $C4$-smooth bounded pseudoconvex domain in $\mathbb{C}2$. We show that if the $\overline{\partial}$-Neumann operator $N_1$ is compact on $L2_{(0,1)}(\Omega)$ then the embedding operator $\mathcal{J}:Dom(\overline{\partial})\cap Dom(\overline{\partial}*) \to L2_{(0,1)}(\Omega)$ is $Lp$-regular for all $2\leq p<\infty$.

Summary

We haven't generated a summary for this paper yet.