Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On noncompactness of the $\overline\partial$-Neumann problem on pseudoconvex domains in $\mathbb{C}^3$ (1705.01415v2)

Published 3 May 2017 in math.CV

Abstract: In this paper we deal with the following question: is it true that any bounded smooth pseudoconvex domain in $\mathbb{C}n$ whose boundary contains a $q$-dimensional complex manifold $M$ necessarily has a noncompact $\overline\partial$-Neumann operator $N_q$ ($1\leq q\leq n-1$)? We prove that a smooth bounded pseudoconvex domain $\Omega\subseteq\mathbb{C}3$ with a one-dimensional complex manifold $M$ in its boundary has a noncompact Neumann operator on $(0,1)$-forms, under the additional assumption that $b\Omega$ has finite regular D'Angelo $2$-type at a point of $M$, improving previous results of Fu, \c{S}ahuto\u{g}lu, and Straube.

Summary

We haven't generated a summary for this paper yet.