Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Weighted Quiver Kernel using Functor Homology (2009.12928v1)

Published 27 Sep 2020 in cs.LG and stat.ML

Abstract: In this paper, we propose a new homological method to study weighted directed networks. Our model of such networks is a directed graph $Q$ equipped with a weight function $w$ on the set $Q_{1}$ of arrows in $Q$. We require that the range $W$ of our weight function is equipped with an addition or a multiplication, i.e., $W$ is a monoid in the mathematical terminology. When $W$ is equipped with a representation on a vector space $M$, the standard method of homological algebra allows us to define the homology groups $H_{*}(Q,w;M)$. It is known that when $Q$ has no oriented cycles, $H_{n}(Q,w;M)=0$ for $n\ge 2$ and $H_{1}(Q,w;M)$ can be easily computed. This fact allows us to define a new graph kernel for weighted directed graphs. We made two sample computations with real data and found that our method is practically applicable.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.