2000 character limit reached
Equivariant Tilting Modules, Pfaffian Varieties and Noncommutative Matrix Factorizations (2009.12785v3)
Published 27 Sep 2020 in math.AG and math.RT
Abstract: We show that equivariant tilting modules over equivariant algebras induce equivalences of derived factorization categories. As an application, we show that the derived category of a noncommutative resolution of a linear section of a Pfaffian variety is equivalent to the derived factorization category of a noncommutative gauged Landau-Ginzburg model $(\Lambda,\chi, w){\mathbb{G}_m}$, where $\Lambda$ is a noncommutative resolution of the quotient singularity $W/\operatorname{GSp}(Q)$ arising from a certain representation $W$ of the symplectic similitude group $\operatorname{GSp}(Q)$ of a symplectic vector space $Q$.