Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equivalences of derived factorization categories of gauged Landau-Ginzburg models (1506.00177v2)

Published 30 May 2015 in math.AG

Abstract: For a given Fourier-Mukai equivalence of bounded derived categories of coherent sheaves on smooth quasi-projective varieties, we construct Fourier-Mukai equivalences of derived factorization categories of gauged Landau-Ginzburg (LG) models. As an application, we obtain some equivalences of derived factorization categories of K-equivalent gauged LG models. This result is an equivariant version of the result of Baranovsky and Pecharich, and it also gives a partial answer to Segal's conjecture. As another application, we prove that if the kernel of the Fourier-Mukai equivalence is linearizable with respect to a reductive affine algebraic group action, then the derived categories of equivariant coherent sheaves on the varieties are equivalent. This result is shown by Ploog for finite groups case.

Summary

We haven't generated a summary for this paper yet.