Scalar curvature and the relative capacity of geodesic balls (2009.12394v1)
Abstract: In a Riemannian manifold, it is well known that the scalar curvature at a point can be recovered from the volumes (areas) of small geodesic balls (spheres). We show the scalar curvature is likewise determined by the relative capacities of concentric small geodesic balls. This result has motivation from general relativity (as a complement to a previous study by the author of the capacity of large balls in an asymptotically flat manifold) and from weak definitions of nonnegative scalar curvature. It also motivates a conjecture (inspired by the famous volume conjecture of Gray and Vanhecke), regarding whether Euclidean-like behavior of the relative capacity on the small scale is sufficient to characterize a space as flat.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.