Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Marginal dynamics of interacting diffusions on unimodular Galton-Watson trees (2009.11667v2)

Published 23 Sep 2020 in math.PR

Abstract: Consider a system of homogeneous interacting diffusive particles labeled by the nodes of a unimodular Galton-Watson (UGW) tree, where the state of each node evolves like a d-dimensional diffusion whose drift coefficient depends on (the histories of) its own state and the states of neighboring nodes, and whose diffusion coefficient depends only on (the history of) its own state. Under suitable regularity assumptions on the coefficients, an autonomous characterization is obtained for the marginal distribution of the dynamics of the neighborhood of a typical node in terms of a certain local equation, which is a new kind of SDE that is nonlinear in the sense of McKean. This equation describes a finite-dimensional non-Markovian stochastic process whose evolution at any time depends not only on the structure and current state of the neighborhood, but also on the conditional law of the current state given the past of the states of neighborhing nodes. Such marginal distributions are of interest because they arise as weak limits of both marginal distributions and empirical measures of interacting diffusions on many sequences of sparse random graphs, including the configuration model and Erdos-Renyi graphs whose average degrees converge to a finite non-zero limit. The results obtained complement classical results in the mean-field regime, which characterize the limiting dynamics of homogeneous interacting diffusions on complete graphs, as the number of nodes goes to infinity, in terms of a corresponding nonlinear Markov process. However, in the sparse graph setting, the topology of the graph strongly influences the dynamics, and the analysis requires a completely different approach. The proofs of existence and uniqueness of the local equation rely on delicate new conditional independence and symmetry properties of particle trajectories on UGW trees, as well as judicious use of changes of measure.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube