Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

First-Order General-Relativistic Viscous Fluid Dynamics (2009.11388v2)

Published 23 Sep 2020 in gr-qc, hep-ph, hep-th, and nucl-th

Abstract: We present the first generalization of Navier-Stokes theory to relativity that satisfies all of the following properties: (a) the system coupled to Einstein's equations is causal and strongly hyperbolic; (b) equilibrium states are stable; (c) all leading dissipative contributions are present, i.e., shear viscosity, bulk viscosity, and thermal conductivity; (d) non-zero baryon number is included; (e) entropy production is non-negative in the regime of validity of the theory; (f) all of the above holds in the nonlinear regime without any simplifying symmetry assumptions. These properties are accomplished using a generalization of Eckart's theory containing only the hydrodynamic variables, so that no new extended degrees of freedom are needed as in M\"uller-Israel-Stewart theories. Property (b), in particular, follows from a more general result that we also establish, namely, sufficient conditions that when added to stability in the fluid's rest frame imply stability in any reference frame obtained via a Lorentz transformation. All our results are mathematically rigorously established. The framework presented here provides the starting point for systematic investigations of general-relativistic viscous phenomena in neutron star mergers.

Citations (53)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.