Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Curriculum Learning with Diversity for Supervised Computer Vision Tasks (2009.10625v1)

Published 22 Sep 2020 in cs.CV, cs.AI, and cs.LG

Abstract: Curriculum learning techniques are a viable solution for improving the accuracy of automatic models, by replacing the traditional random training with an easy-to-hard strategy. However, the standard curriculum methodology does not automatically provide improved results, but it is constrained by multiple elements like the data distribution or the proposed model. In this paper, we introduce a novel curriculum sampling strategy which takes into consideration the diversity of the training data together with the difficulty of the inputs. We determine the difficulty using a state-of-the-art estimator based on the human time required for solving a visual search task. We consider this kind of difficulty metric to be better suited for solving general problems, as it is not based on certain task-dependent elements, but more on the context of each image. We ensure the diversity during training, giving higher priority to elements from less visited classes. We conduct object detection and instance segmentation experiments on Pascal VOC 2007 and Cityscapes data sets, surpassing both the randomly-trained baseline and the standard curriculum approach. We prove that our strategy is very efficient for unbalanced data sets, leading to faster convergence and more accurate results, when other curriculum-based strategies fail.

Citations (10)

Summary

We haven't generated a summary for this paper yet.