Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Detecting Sound Events Using Convolutional Macaron Net With Pseudo Strong Labels (2009.09632v2)

Published 21 Sep 2020 in eess.AS and cs.SD

Abstract: In this paper, we propose addressing the lack of strongly labeled data by using pseudo strongly labeled data approximated using Convolutive Nonnegative Matrix Factorization. Using this set of data, we then train a novel architecture called the Convolutional Macaron Net (CMN), which combines Convolutional Neural Network (CNN) with MN, in a semi-supervised manner. Instead of training only a single model or using the Mean-teacher approach, we train two different CMNs synchronously using a curriculum consistency cost and a curriculum interpolated consistency cost. In the inference stage, one of the models will provide the frame-level prediction while the other model will provide the clip-level prediction. Our system outperforms the baseline system of the Detection and Classification of Acoustic Scenes and Events (DCASE) 2020 Challenge Task 4 by a margin of over 10% based on our proposed framework. By comparing with the top submission of the DCASE 2019 challenge, our system accuracy is also higher by 1.8%. On the other hand, as compared to the top submission of DCASE 2020, our accuracy is also marginally higher by 0.3%, even with fewer Transformer encoding layers. Our system remains robust on unseen YouTube evaluation dataset and has a winning margin of 0.6% and 6.3% against the top submission of DCASE 2019 and the baseline system.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.