Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 68 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Convergence Rates of Exceptional Zeros of Exceptional Orthogonal Polynomials (2009.09432v1)

Published 20 Sep 2020 in math.CA

Abstract: We consider the zeros of exceptional orthogonal polynomials (XOP). Exceptional orthogonal polynomials were originally discovered as eigenfunctions of second order differential operators that exist outside the classical Bochner-Brenke classification due to the fact that XOP sequences omit polynomials of certain degrees. This omission causes several properties of the classical orthogonal polynomial sequences to not extend to the XOP sequences. One such property is the restriction of the zeros to the convex hull of the support of the measure of orthogonality. In the XOP case, the zeros that exist outside the classical intervals are called exceptional zeros and they often converge to easily identifiable limit points as the degree becomes large. We deduce the exact rate of convergence and verify that certain estimates that previously appeared in the literature are sharp.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube