Surjective separating maps on noncommutative $L^p$-spaces (2009.05919v2)
Abstract: Let $1\leq p<\infty$ and let $T\colon Lp({\mathcal M})\to Lp({\mathcal N})$ be a bounded map between noncommutative $Lp$-spaces. If $T$ is bijective and separating (i.e., for any $x,y\in Lp({\mathcal M})$ such that $xy=xy^=0$, we have $T(x)T(y)=T(x)T(y)^=0$), we prove the existence of decompositions ${\mathcal M}={\mathcal M}1\mathop{\oplus}\limits\infty{\mathcal M}_2$, ${\mathcal N}={\mathcal N}_1 \mathop{\oplus}\limits\infty{\mathcal N}_2$ and maps $T_1\colon Lp({\mathcal M}_1)\to Lp({\mathcal N}_1)$, $T_2\colon Lp({\mathcal M}_2)\to Lp({\mathcal N}_2)$, such that $T=T_1+T_2$, $T_1$ has a direct Yeadon type factorisation and $T_2$ has an anti-direct Yeadon type factorisation. We further show that $T{-1}$ is separating in this case. Next we prove that for any $1\leq p<\infty$ (resp. any $1\leq p\not=2<\infty$), a surjective separating map $T\colon Lp({\mathcal M})\to Lp({\mathcal N})$ is $S1$-bounded (resp. completely bounded) if and only if there exists a decomposition ${\mathcal M}={\mathcal M}_1 \mathop{\oplus}\limits\infty{\mathcal M}_2$ such that $T|{Lp({\tiny {\mathcal M}_1})}$ has a direct Yeadon type factorisation and ${\mathcal M}_2$ is subhomogeneous.