Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On factorization of separating maps on noncommutative $L^p$-spaces (2007.04577v2)

Published 9 Jul 2020 in math.OA

Abstract: For any semifinite von Neumann algebra ${\mathcal M}$ and any $1\leq p<\infty$, we introduce a natutal $S1$-valued noncommutative $Lp$-space $Lp({\mathcal M};S1)$. We say that a bounded map $T\colon Lp({\mathcal M})\to Lp({\mathcal N})$ is $S1$-bounded (resp. $S1$-contractive) if $T\otimes I_{S1}$ extends to a bounded (resp. contractive) map $T\overline{\otimes} I_{S1}$ from $ Lp({\mathcal M};S1)$ into $Lp({\mathcal N};S1)$. We show that any completely positive map is $S1$-bounded, with $\Vert T\overline{\otimes} I_{S1}\Vert =\Vert T\Vert$. We use the above as a tool to investigate the separating maps $T\colon Lp({\mathcal M})\to Lp({\mathcal N})$ which admit a direct Yeadon type factorization, that is, maps for which there exist a $w*$-continuous $*$-homomorphism $J\colon{\mathcal M}\to{\mathcal N}$, a partial isometry $w\in{\mathcal N}$ and a positive operator $B$ affiliated with ${\mathcal N}$ such that $w*w=J(1)=s(B)$, $B$ commutes with the range of $J$, and $T(x)=wBJ(x)$ for any $x\in {\mathcal M}\cap Lp({\mathcal M})$. Given a separating isometry $T\colon Lp({\mathcal M})\to Lp({\mathcal N})$, we show that $T$ is $S1$-contractive if and only if it admits a direct Yeadon type factorization. We further show that if $p\not=2$, the above holds true if and only if $T$ is completely contractive.

Summary

We haven't generated a summary for this paper yet.