Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Ground state in the energy super-critical Gross-Pitaevskii equation with a harmonic potential (2009.04929v2)

Published 10 Sep 2020 in math-ph, math.AP, math.CA, math.DS, math.MP, and nlin.PS

Abstract: The energy super-critical Gross--Pitaevskii equation with a harmonic potential is revisited in the particular case of cubic focusing nonlinearity and dimension d > 4. In order to prove the existence of a ground state (a positive, radially symmetric solution in the energy space), we develop the shooting method and deal with a one-parameter family of classical solutions to an initial-value problem for the stationary equation. We prove that the solution curve (the graph of the eigenvalue parameter versus the supremum) is oscillatory for d <= 12 and monotone for d >= 13. Compared to the existing literature, rigorous asymptotics are derived by constructing three families of solutions to the stationary equation with functional-analytic rather than geometric methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.