Papers
Topics
Authors
Recent
Search
2000 character limit reached

A short proof that ${\mathcal B}(L_1)$ is not amenable

Published 8 Sep 2020 in math.FA | (2009.04028v3)

Abstract: Non-amenability of ${\mathcal B}(E)$ has been surprisingly difficult to prove for the classical Banach spaces, but is now known for $E= \ell_p$ and $E=L_p$ for all $1\leq p<\infty$. However, the arguments are rather indirect: the proof for $L_1$ goes via non-amenability of $\ell\infty({\mathcal K}(\ell_1))$ and a transference principle developed by Daws and Runde (Studia Math., 2010). In this note, we provide a short proof that ${\mathcal B}(L_1)$ and some of its subalgebras are non-amenable, which completely bypasses all of this machinery. Our approach is based on classical properties of the ideal of representable operators on $L_1$, and shows that ${\mathcal B}(L_1)$ is not even approximately amenable.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.