Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Bishop-Phelps-Bollobás theorem for operators on $L_1(μ)$ (1303.6078v1)

Published 25 Mar 2013 in math.FA

Abstract: In this paper we show that the Bishop-Phelps-Bollob\'as theorem holds for $\mathcal{L}(L_1(\mu), L_1(\nu))$ for all measures $\mu$ and $\nu$ and also holds for $\mathcal{L}(L_1(\mu),L_\infty(\nu))$ for every arbitrary measure $\mu$ and every localizable measure $\nu$. Finally, we show that the Bishop-Phelps-Bollob\'as theorem holds for two classes of bounded linear operators from a real $L_1(\mu)$ into a real $C(K)$ if $\mu$ is a finite measure and $K$ is a compact Hausdorff space. In particular, one of the classes includes all Bochner representable operators and all weakly compact operators.

Summary

We haven't generated a summary for this paper yet.