2000 character limit reached
Penalized Maximum Likelihood Estimator for Mixture of von Mises-Fisher Distributions (2009.02921v2)
Published 7 Sep 2020 in stat.ME
Abstract: The von Mises-Fisher distribution is one of the most widely used probability distributions to describe directional data. Finite mixtures of von Mises-Fisher distributions have found numerous applications. However, the likelihood function for the finite mixture of von Mises-Fisher distributions is unbounded and consequently the maximum likelihood estimation is not well defined. To address the problem of likelihood degeneracy, we consider a penalized maximum likelihood approach whereby a penalty function is incorporated. We prove strong consistency of the resulting estimator. An Expectation-Maximization algorithm for the penalized likelihood function is developed and simulation studies are performed to examine its performance.