Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Mixture Estimation via Approximate Maximum Likelihood based on the Cramér - von Mises distance (2211.05847v2)

Published 10 Nov 2022 in stat.ME and stat.CO

Abstract: Mixture distributions with dynamic weights are an efficient way of modeling loss data characterized by heavy tails. However, maximum likelihood estimation of this family of models is difficult, mostly because of the need to evaluate numerically an intractable normalizing constant. In such a setup, simulation-based estimation methods are an appealing alternative. The approximate maximum likelihood estimation (AMLE) approach is employed. It is a general method that can be applied to mixtures with any component densities, as long as simulation is feasible. The focus is on the dynamic lognormal-generalized Pareto distribution, and the Cram\'er - von Mises distance is used to measure the discrepancy between observed and simulated samples. After deriving the theoretical properties of the estimators, a hybrid procedure is developed, where standard maximum likelihood is first employed to determine the bounds of the uniform priors required as input for AMLE. Simulation experiments and two real-data applications suggest that this approach yields a major improvement with respect to standard maximum likelihood estimation.

Citations (4)

Summary

We haven't generated a summary for this paper yet.