Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Filtered interpolation for solving Prandtl's integro-differential equations (2009.01290v1)

Published 2 Sep 2020 in math.NA and cs.NA

Abstract: In order to solve Prandtl-type equations we propose a collocation-quadrature method based on VP filtered interpolation at Chebyshev nodes. Uniform convergence and stability are proved in a couple of Holder - Zygmund spaces of locally continuous functions. With respect to classical methods based on Lagrange interpolation at the same collocation nodes, we succeed in reproducing the optimal convergence rates of the L2 case by cutting off the typical log factor which seemed inevitable dealing with uniform norms. Such an improvement does not require a greater computational effort. In particular we propose a fast algorithm based on the solution of a simple 2-bandwidth linear system and prove that, as its dimension tends to infinity, the sequence of the condition numbers (in any natural matrix norm) tends to a finite limit.

Citations (14)

Summary

We haven't generated a summary for this paper yet.