Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some remarks on filtered polynomial interpolation at Chebyshev nodes (2101.04551v1)

Published 12 Jan 2021 in math.NA and cs.NA

Abstract: The present paper concerns filtered de la Vall\'ee Poussin (VP) interpolation at the Chebyshev nodes of the four kinds. This approximation model is interesting for applications because it combines the advantages of the classical Lagrange polynomial approximation (interpolation and polynomial preserving) with the ones of filtered approximation (uniform boundedness of the Lebesgue constants and reduction of the Gibbs phenomenon). Here we focus on some additional features that are useful in the applications of filtered VP interpolation. In particular, we analyze the simultaneous approximation provided by the derivatives of the VP interpolation polynomials. Moreover, we state the uniform boundedness of VP approximation operators in some Sobolev and H\"older--Zygmund spaces where several integro--differential models are uniquely and stably solvable.

Citations (9)

Summary

We haven't generated a summary for this paper yet.