Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 139 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Pattern avoidance in the matching pattern poset (2009.01024v1)

Published 2 Sep 2020 in math.CO

Abstract: A matching of the set $[2n]={ 1,2,\ldots ,2n}$ is a partition of $[2n]$ into blocks with two elements, i.e. a graph on $[2n]$ such that every vertex has degree one. Given two matchings $\sigma$ and $\tau$ , we say that $\sigma$ is a pattern of $\tau$ when $\sigma$ can be obtained from $\tau$ by deleting some of its edges and consistently relabelling the remaining vertices. This is a partial order relation turning the set of all matchings into a poset, which will be called the matching pattern poset. In this paper, we continue the study of classes of pattern avoiding matchings, initiated by Chen, Deng, Du, Stanley and Yan (2007), Jelinek and Mansour (2010), Bloom and Elizalde (2012). In particular, we work out explicit formulas to enumerate the class of matchings avoiding two new patterns, obtained by juxtaposition of smaller patterns, and we describe a recursive formula for the generating function of the class of matchings avoiding the lifting of a pattern and two additional patterns. Finally, we introduce the notion of unlabeled pattern, as a combinatorial way to collect patterns, and we provide enumerative formulas for two classes of matchings avoiding an unlabeled pattern of order three. In one case, the enumeration follows from an interesting bijection between the matchings of the class and ternary trees.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.